Technological and economical feasibility of a 40,000 t/y tyre pyrolysis plant: results of a H2020 SME Phase 1 study

Dr Frank Riedewald, Managing Director, Composite Recycling Ltd, Cork, Ireland

Dr Maria Sousa-Gallagher, Process and Chemical Engineering, University College Cork, Ireland

ETRA conference, 18th March 2016

frank.riedewald@comp.recycling.com
www.crl ltd.com
Waste Tyre Pyrolysis

Contents

1. Requirements for a commercial process
2. Composite Recycling Ltd’s process
3. Technical assessment
4. Market analysis
5. Financial assessment

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 672558.
Requirements for a commercial process
Requirements for a commercial process

Scale

Scale Scale Scale Scale
Requirements for a commercial process

Scale – Amount of tyres

Economies of scale and sales of: P-oil, rCB & steel
Requirements for a commercial process

Economic tyre recycling process

1. Scale of plant (40,000 - 100,000t/y)

2. Whole tyres – no shredding, no granulating

3. Continuous

4. Simple (low tech, low pressure, existing technology)

5. Accessible markets for all products
Composite Recycling Ltd’s process
Composite Recycling Ltd’s process

Reactor

- Pyrolysis vapours
- Carbon black
- Steel
- molten zinc
- leg A
- leg B
- Direct heat transfer – tyres are insulators
Composite Recycling Ltd’s process

Whole process
Technical Assessment
Technical assessment

Concept layout of a 40,000 t/y plant

20m long, 2m wide

P-oil storage

rCB storage
Technical assessment

Scrap tyre feeding system
Technical assessment

Pyrolysis chamber – hot dip galvanizing

MOC = 316 SS
Technical assessment

Carbon black recovery
Technical assessment

Carbon black recovery

Analysis: rCB is free of rubber
Technical assessment

Steel removal – hot dip galvanizing

Steel is galvanized
Technical assessment

Safety - Hot dip galvanizing

Industrial thermoprocessing equipment - Part 1: Common safety requirements for industrial thermoprocessing equipment
Technical assessment

Pyrolysis oil - conventional

Analysis of pyrolysis liquid obtained from whole tyre pyrolysis with molten zinc as the heat transfer media using comprehensive gas chromatography mass spectrometry

Philipp Rathsack, Frank Riedewald, Maria Sousa-Gallagher

* German Centre for Energy Resources, Berche-Zeche, Fuchshofenerweg 9, 09596 Freiberg, Germany
+ Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str., 09596 Freiberg, Germany
© Composite Recycling Ltd., The Rubicon Centre, Bishopstown, CIT Campus, Cork, Ireland
© Process and Chemical Engineering, School of Engineering, University College Cork, Ireland
Market analysis
Market analysis

Market value of products – P-oil, rCB, steel

<table>
<thead>
<tr>
<th>Product</th>
<th>Market price</th>
<th>Market</th>
<th>Competitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipping fee</td>
<td>€97/t</td>
<td>-</td>
<td>Not given</td>
</tr>
<tr>
<td>P-oil</td>
<td>€218/t</td>
<td>Heavy fuel oil</td>
<td>€400-600/t</td>
</tr>
<tr>
<td>rCB</td>
<td>€30/t</td>
<td>Coal</td>
<td>€75-600/t</td>
</tr>
<tr>
<td>Steel</td>
<td>€80/t</td>
<td>Recycled</td>
<td>€75-200/t</td>
</tr>
</tbody>
</table>

Valid: December 2015
Financial Assessment
Financial assessment

40,000 t/year or 4m tyres/year

- **Gate Fees**
 - €97/t
 - €3,880,000

- **Oil (50%)**
 - €218/t
 - €4,360,000

- **Carbon Black (30%)**
 - €30/t
 - €360,000

- **Steel (10%)**
 - €80/t
 - €320,000

- **Gas (10%)**
 - Self-sustaining
Financial assessment

General assumptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Europe</td>
</tr>
<tr>
<td>Currency</td>
<td>Euro</td>
</tr>
<tr>
<td>Operating time</td>
<td>7,500/h, 85% uptime</td>
</tr>
<tr>
<td>Loan period</td>
<td>10 years</td>
</tr>
<tr>
<td>Interest rate</td>
<td>6%</td>
</tr>
<tr>
<td>Inflation</td>
<td>3%</td>
</tr>
<tr>
<td>Plant life</td>
<td>20 years</td>
</tr>
<tr>
<td>Discount rate</td>
<td>10%</td>
</tr>
<tr>
<td>Government support</td>
<td>None (financial)</td>
</tr>
<tr>
<td>Shifts</td>
<td>5</td>
</tr>
<tr>
<td>Personnel</td>
<td>33</td>
</tr>
</tbody>
</table>
Financial assessment

Financials 40,000t/y plant; amounts in thousands

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td></td>
<td>9,830</td>
<td>10,125</td>
<td>10,429</td>
<td>12,090</td>
<td>12,452</td>
<td>12,826</td>
</tr>
<tr>
<td>Expenditures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>28,377</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital payments</td>
<td>-3,856</td>
<td>-3,856</td>
<td>-3,856</td>
<td>-3,856</td>
<td>-3,856</td>
<td>-3,856</td>
<td>-3,856</td>
</tr>
<tr>
<td>Operating cost</td>
<td>-1,029</td>
<td>-1,060</td>
<td>-1,092</td>
<td>-1,266</td>
<td>-1,304</td>
<td>-1,343</td>
<td>-1,343</td>
</tr>
<tr>
<td>Overall expenditures</td>
<td>-3,856</td>
<td>-8,416</td>
<td>-8,553</td>
<td>-8,694</td>
<td>-9,464</td>
<td>-9,633</td>
<td>-6,821</td>
</tr>
<tr>
<td>Profit</td>
<td>-3,856</td>
<td>1,414</td>
<td>1,572</td>
<td>1,735</td>
<td>2,625</td>
<td>2,820</td>
<td>6,005</td>
</tr>
<tr>
<td>Discounted Cash Flow</td>
<td>-3,856</td>
<td>1,414</td>
<td>1,572</td>
<td>1,735</td>
<td>2,625</td>
<td>2,820</td>
<td>5,404</td>
</tr>
<tr>
<td>Cumulative Cash Flow</td>
<td>-3,856</td>
<td>-2,442</td>
<td>-870</td>
<td>865</td>
<td>11,288</td>
<td>14,107</td>
<td>19,511</td>
</tr>
</tbody>
</table>

Measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR (10 years)</td>
<td>20%</td>
</tr>
<tr>
<td>NPV (10 years)</td>
<td>€2.1m</td>
</tr>
<tr>
<td>Payback period</td>
<td>2.5 years</td>
</tr>
</tbody>
</table>

40,000t/y minimum throughput of an economic plant.
Financial assessment

Financials 40,000t/y plant – effect of shredding

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR (10 years)</td>
<td>20%</td>
</tr>
</tbody>
</table>

Shredding €25/t

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR (10 years)</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Market analysis

Future profitability

<table>
<thead>
<tr>
<th>Product</th>
<th>Price (today)</th>
<th>Price (future)</th>
<th>Reason</th>
<th>IRR (Sensitivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-oil</td>
<td>€218/t</td>
<td>€400/t</td>
<td>Oil price increase</td>
<td>100%</td>
</tr>
<tr>
<td>rCB</td>
<td>€30/t</td>
<td>€100/t</td>
<td>rCB upgrade</td>
<td>40%</td>
</tr>
</tbody>
</table>

\[\text{€400} = \sim$80/\text{bbl} \text{ in 2020} \]
Summary

Use proven, existing technologies

IRR over 20%
Composite Recycling Ltd

The next steps

1. Investment, H2020 Phase 2
2. Demonstration plant
References